Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 14: 1289744, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37965310

RESUMEN

Non-HLA-directed regulatory autoantibodies (RABs) are known to target G-protein coupled receptors (GPCRs) and thereby contribute to kidney transplant vasculopathy and failure. However, the detailed underlying signaling mechanisms in human microvascular endothelial cells (HMECs) and immune cells need to be clarified in more detail. In this study, we compared the immune stimulatory effects and concomitant intracellular and extracellular signaling mechanisms of immunoglobulin G (IgG)-fractions from kidney transplant patients with allograft vasculopathy (KTx-IgG), to that from patients without vasculopathy, or matched healthy controls (Con-IgG). We found that KTx-IgG from patients with vasculopathy, but not KTx-IgG from patients without vasculopathy or Con-IgG, elicits HMEC activation and subsequent upregulation and secretion of tumor necrosis factor alpha (TNF-α) from HMECs, which was amplified in the presence of the protease-activated thrombin receptor 1 (PAR1) activator thrombin, but could be omitted by selectively blocking the PAR1 receptor. The amount and activity of the TNF-α secreted by HMECs stimulated with KTx-IgG from patients with vasculopathy was sufficient to induce subsequent THP-1 monocytic cell activation. Furthermore, AP-1/c-FOS, was identified as crucial transcription factor complex controlling the KTx-IgG-induced endothelial TNF-α synthesis, and mircoRNA-let-7f-5p as a regulatory element in modulating the underlying signaling cascade. In conclusion, exposure of HMECs to KTx-IgG from patients with allograft vasculopathy, but not KTx-IgG from patients without vasculopathy or healthy Con-IgG, triggers signaling through the PAR1-AP-1/c-FOS-miRNA-let7-axis, to control TNF-α gene transcription and TNF-α-induced monocyte activation. These observations offer a greater mechanistic understanding of endothelial cells and subsequent immune cell activation in the clinical setting of transplant vasculopathy that can eventually lead to transplant failure, irrespective of alloantigen-directed responses.


Asunto(s)
Enfermedades Renales , Trombina , Humanos , Aloinjertos , Autoanticuerpos , Células Endoteliales/fisiología , Inmunoglobulina G , Riñón , Monocitos , Receptor PAR-1 , Factor de Transcripción AP-1 , Factor de Necrosis Tumoral alfa/metabolismo
2.
Front Immunol ; 14: 1200180, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37415976

RESUMEN

During the pandemic of severe respiratory distress syndrome coronavirus 2 (SARS-CoV2), many novel therapeutic modalities to treat Coronavirus 2019 induced disease (COVID-19) were explored. This study summarizes 195 clinical trials of advanced cell therapies targeting COVID-19 that were registered over the two years between January 2020 to December 2021. In addition, this work also analyzed the cell manufacturing and clinical delivery experience of 26 trials that published their outcomes by July 2022. Our demographic analysis found the highest number of cell therapy trials for COVID-19 was in United States, China, and Iran (N=53, 43, and 19, respectively), with the highest number per capita in Israel, Spain, Iran, Australia, and Sweden (N=0.641, 0.232, 0,223, 0.194, and 0.192 trials per million inhabitants). The leading cell types were multipotent mesenchymal stromal/stem cells (MSCs), natural killer (NK) cells, and mononuclear cells (MNCs), accounting for 72%, 9%, and 6% of the studies, respectively. There were 24 published clinical trials that reported on infusions of MSCs. A pooled analysis of these MSC studies found that MSCs provide a relative risk reduction for all-cause COVID-19 mortality of RR=0.63 (95% CI 0.46 to 0.85). This result corroborates previously published smaller meta-analyses, which suggested that MSC therapy demonstrated a clinical benefit for COVID-19 patients. The sources of the MSCs used in these studies and their manufacturing and clinical delivery methods were remarkably heterogeneous, with some predominance of perinatal tissue-derived products. Our results highlight the important role that cell therapy products may play as an adjunct therapy in the management of COVID-19 and its related complications, as well as the importance of controlling key manufacturing parameters to ensure comparability between studies. Thus, we support ongoing calls for a global registry of clinical studies with MSC products that could better link cell product manufacturing and delivery methods to clinical outcomes. Although advanced cell therapies may provide an important adjunct treatment for patients affected by COVID-19 in the near future, preventing pathology through vaccination still remains the best protection to date. We conducted a systematic review and meta-analysis of advanced cell therapy clinical trials as potential novel treatment for COVID-19 (resulting from SARS-CoV-2 coronavirus infection), including analysis of the global clinical trial landscape, published safety/efficacy outcomes (RR/OR), and details on cell product manufacturing and clinical delivery. This study had a 2-year observation interval from start of January 2020 to end of December 2021, including a follow-up period until end of July to identify published outcomes, which covers the most vivid period of clinical trial activity, and is also the longest observation period studied until today. In total, we identified 195 registered advanced cell therapy studies for COVID-19, employing 204 individual cell products. Leading registered trial activity was attributed to the USA, China, and Iran. Through the end of July 2022, 26 clinical trials were published, with 24 out of 26 articles employing intravenous infusions (IV) of mesenchymal stromal/stem cell (MSC) products. Most of the published trials were attributed to China and Iran. The cumulative results from the 24 published studies employing infusions of MSCs indicated an improved survival (RR=0.63 with 95% Confidence Interval 0.46 to 0.85). Our study is the most comprehensive systematic review and meta-analysis on cell therapy trials for COVID-19 conducted to date, clearly identifying the USA, China, and Iran as leading advanced cell therapy trial countries for COVID-19, with further strong contributions from Israel, Spain, Australia and Sweden. Although advanced cell therapies may provide an important adjunct treatment for patients affected by COVID-19 in the future, preventing pathology through vaccination remains the best protection.


Asunto(s)
COVID-19 , Trasplante de Células Madre Mesenquimatosas , Humanos , COVID-19/terapia , COVID-19/etiología , SARS-CoV-2 , ARN Viral , Trasplante de Células Madre Mesenquimatosas/métodos , España
3.
J Med Virol ; 95(2): e28538, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36722456

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is associated with increased levels of autoantibodies targeting immunological proteins such as cytokines and chemokines. Reports further indicate that COVID-19 patients may develop a broad spectrum of autoimmune diseases due to reasons not fully understood. Even so, the landscape of autoantibodies induced by SARS-CoV-2 infection remains uncharted territory. To gain more insight, we carried out a comprehensive assessment of autoantibodies known to be linked to diverse autoimmune diseases observed in COVID-19 patients in a cohort of 231 individuals, of which 161 were COVID-19 patients (72 with mild, 61 moderate, and 28 with severe disease) and 70 were healthy controls. Dysregulated IgG and IgA autoantibody signatures, characterized mainly by elevated concentrations, occurred predominantly in patients with moderate or severe COVID-19 infection. Autoantibody levels often accompanied anti-SARS-CoV-2 antibody concentrations while stratifying COVID-19 severity as indicated by random forest and principal component analyses. Furthermore, while young versus elderly COVID-19 patients showed only slight differences in autoantibody levels, elderly patients with severe disease presented higher IgG autoantibody concentrations than young individuals with severe COVID-19. This work maps the intersection of COVID-19 and autoimmunity by demonstrating the dysregulation of multiple autoantibodies triggered during SARS-CoV-2 infection. Thus, this cross-sectional study suggests that SARS-CoV-2 infection induces autoantibody signatures associated with COVID-19 severity and several autoantibodies that can be used as biomarkers of COVID-19 severity, indicating autoantibodies as potential therapeutical targets for these patients.


Asunto(s)
Enfermedades Autoinmunes , COVID-19 , Anciano , Humanos , Autoanticuerpos , Estudios Transversales , SARS-CoV-2 , Inmunoglobulina G
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...